Interaction of metallic nanoparticles with a biologically active molecule, dopamine.
نویسندگان
چکیده
We present the results of first-principles molecular orbital calculations describing the interaction of metallic nanoparticles, represented by Mn(13), Ag(13), and Al(13) atomic clusters, with a biologically active molecule, dopamine. The interaction strength, determined in terms of the nanoparticle-molecule complex binding energy, is found to be higher for Mn than either Ag or Al and can be explained in terms of the degree of the hybridization of the (metal) atomic orbitals with the molecular orbitals in the complex. Furthermore, smaller interaction strength of these metallic nanoparticles with water compared to that with dopamine predicts the preference of forming a complex of dopamine with the metallic nanoparticles in the aqueous solution. The calculated results may therefore suggest that the presence of these metallic nanoparticles could induce different levels of dopamine depletion in solution.
منابع مشابه
Structural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملSpectroscopic investigation on the interaction of DNA with superparamagnetic iron oxide nanoparticles doped with chromene via dopamine as cross linker
Objective(s): The interaction of DNA with iron oxide nanoparticles (SPIONs) was studied to find out the interaction mechanism and design new drug delivery systems. Materials and Methods: The interaction of calf thymus DNA (ctDNA) with SPIONs doped with 2H-chromene via dopamine as cross linker (SPIONs@DA-Chr) was studied using the UV absorption spectroscopy, viscosity measurement, circular dichr...
متن کاملAdenine molecule interacting with golden nanocluster: A dispersion corrected DFT study
The interaction between nanoparticles and biomolecules such as protein andDNA is one of the major instructions of nanobiotechnology research. In this study,we have explored the interaction of adenine nucleic base with a representativegolden cluster (Au13) by using dispersion corrected density functional theory(DFT-D3) within GGA-PBE model of theory. Various active sites ...
متن کاملA First-Principles Study of the Interaction of Aspirin with Nitrogen-Doped TiO2 Anatase Nanoparticles
Objective(s): First-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped TiO2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of TiO2 particles. Methods: For this purpose, we have mainly studied the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2008